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ABSTRACT
Studies of the genetic diversity of the Guaymi and Guabala cattle breeds have shown the need to
evaluate various components, including the polymorphism of casein genes. The objective of this work
is to characterize the casein variants in the Guaymi and Guabala landraces by means of a low-density
SNP arrangement. Twenty-four SNP markers were typed in samples of Guabala and Guaymi Creole
cattle. The values of Ho, He, and Fis, considering only the polymorphic loci in the Guabala breed, were
0.438, 0.449, and 0.011, respectively. In the case of the Guaymi breed, Ho, He, and Fis at the
polymorphic loci were 0.513, 0.405, and −0.281, respectively. The effective number of alleles obtained
from the Guabala breed was 1.167, and that in Guaymi was 1.257. This study determined the genetic
diversity of the casein group in the Guaymi and Guabala breeds; however, few polymorphic alleles
were observed, particularly in the Guabala race. Both breeds had high frequencies of the A2A2
genotype at rs43703011 (CSN2), which is considered favourable for production of quality milk. The
identified markers will allow the design of strategies to reduce the levels of inbreeding and better
understand the aptitudes of both breeds in terms of productivity.

ARTICLE HISTORY
Received 12 July 2022
Accepted 28 November 2022

KEYWORDS
Livestock; local breeds;
molecular genetics;
biodiversity; biotechnology

Introduction

Bovine milk is composed of 3–5% protein and consists of two
main groups, whey proteins and caseins (Alim et al. 2014).
Caseins represent 80% of dairy proteins in cattle (Martien
et al. 1994), while serum proteins represent 14% (Roginski
et al., 2003). The casein group is the largest among the com-
ponents of milk and is encoded by four genes (Asmarasari
et al. 2020): CSN1S1 (αs1-casein) contributes 39–46% of the
total of this group, CSN1S2 (αs2-casein) contributes 8–11%,
CSN2 (β-casein) contributes 25–35%, and CSN3 (kappa-casein)
contributes 8–15% (Eigel et al. 1984; Ferretti et al. 1990;
Roginski 2003). These genes are near each other on chromo-
some 6, within a range of 251.26 kb, which close relationship
has suggested that the genes are often not inherited indepen-
dently but as a single haplotype (Meier et al. 2019) in cattle as
well as goats and sheep (Ferretti et al. 1990; Hayes et al. 1993;
Popescu et al. 1996).

The genes of casein are closely related to the quality and
productivity of milk and its derivatives. CS1NS1 is associated
with high milk production, as well as protein content (Eenen-
naam and Medrano 1991). CSN2 has particular importance
since it is related not only to the high yield and quality of
milk (Kučerova et al. 2006) but also to a healthier product, par-
ticularly its A2A2 variant, unlike the A1A1 variant, which has
been associated with the bioactive peptide β-casomorphin
and human health risk factors such as ischaemic heart
disease, arteriosclerosis, type I diabetes, sudden infant death

syndrome, and autism (Kaminski et al. 2007; Kost et al. 2009;
Cieslinska et al. 2012). CSN1S2 is associated with protein yield
(Nilsen et al. 2009). CSN3 is related to milk protein coding,
the latter very important in the stability of the structure of
casein micelles, milk production, and cheese quality (Alexander
et al. 1988; Alim et al. 2014). Laible et al. (2016) revealed that
milk protein genes have the potential to be used to improve
the bovine milk component. The studies of genetic diversity
that have been carried out in the Guaymi and Guabala
breeds (Delgado et al. 2011; Ginja et al. 2019; Villalobos-
Cortes et al. 2021a) have highlighted the need to evaluate
various factors of productivity and milk quality, such as the
variability of casein genes. The objective of this study is to
characterize the caseins in the genomes of the Guaymi and
Guabala breeds of Panama by genotyping single-nucleotide
polymorphisms (SNPs).

Materials and methods

Sample collection

The polymorphism of 24 SNP markers of the caseins CSN1S1 (2),
CSN2 (8), CSN1S2 (2), and CSN3 (12) of 34 samples of Criollo
Guabala (15) and Guaymi cattle (19). The animals were selected
within the conservation centres through a previously carried
out genetic characterization, to guarantee the purity of both
breeds (Villalobos-Cortes et al. 2020). These SNPs were selected
from an array of 10,000 SNP markers in an Affymetrix Axiom
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OrcunSNP Array platform, as part of the Innovative Manage-
ment of Animal Genetic Resources (IMAGE) project in the
Horizon 2020 framework programme.

Genomic DNA isolation

Five-millilitre samples of venous blood were taken from each
animal and kept cold until arrival at the laboratory. DNA was
extracted using the commercial kit DNeasy Blood and Tissue
from Qiagen, obtaining an average concentration of 45 ng/ml
and a volume of 50 µl per sample, with a total amount of
2.5 µg of DNA. Affymetrix analyses complied with the Nagoya
protocol. Of the 10,000 SNPs selected, 8416 met the criteria rec-
ommended by the company, with a conversion threshold of
0.6. All SNPs were aligned with the UMD 3.1.1 reference
genome (Elsik et al. 2016). The results obtained in VCF format
were validated and transformed into GDA format using the
program PGDSpider 2.1.1.5 (Lischer and Excoffier 2012), then
converted to text and Excel formats. To verify the positions of
the SNPs, the Integrative Genome Viewer program IGV
2.9.4.03 (Robinson et al. 2011) was used along with the
Genome Data Viewer of the National Center for Biotechnology
Information (NCBI), with the same reference genome, UMD
3.1.1. SNPs that had a reference number (RefSNP) were used
to locate them in the reference genome position ARS.UCD.1.2
by Ensembl! (Howe et al. 2021) and the European Variation
Archive (Cezard et al. 2021).

Genetic diversity analysis

To evaluate the genetic variability within each population, the
following parameters were calculated: percentage of poly-
morphic loci, observed heterozygosity (Ho), expected hetero-
zygosity (He), effective number of alleles (Ne), and deviations
from Hardy–Weinberg (HW) equilibrium in each population,
calculated by the exact test using the Markov chain method
with a chain length of 1,000,000 and 100,000 memorization
steps (Guo and Thompson 1992). Gene and genotypic fre-
quencies and Fis, Fst, and Fit values were also calculated
(Wright 1965; Weir and Cockerham 1984). GENETIX 4.02
(Belkhir et al. 2003), GenAlEx 6.501 (Peakall and Smouse
2012) and ARLEQUIN 3.5. (Excoffier et al. 2005), the Shannon
diversity index was calculated using GenAlEx 6.501. The poly-
morphic variants were subjected to Cattle QTLdb (Zhi-Liang
et al. 2007) to identify possible associations with economic
utility traits.

Results

Of the 24 markers analysed, 23 were considered usable; in the
Guabala breed, 20.83% of polymorphic loci were obtained (5),
and in the Guaymi breed, 37.50% of polymorphic loci were
obtained (8). Most of the variants, except for one belonging
to the CSN2 gene (6:87183034) and three belonging to the
CSN3 gene (6:87390198, 6:87390448 and 6:87390604), were
identified. The location in the reference genome (UMD 3.1.1,
Genome Data Viewer of NCBI). The values of Ho, He and Fis
(Table 1) considering only the polymorphic loci in the
Guabala breed were 0.438, 0.449, and 0.0108, respectively. In
the case of the Guaymi race, Ho, He and Fis, also considering
the polymorphic loci, were 0.513, 0.405, and −0.281, respect-
ively. The Ne obtained from the Guabala breed was 1.167,
and the Guaymi was 1.257, both considered low.

The general mean of the Shannon index considering the
polymorphic loci was 0.173 for each population was 0.130 in
Guabala and 0.215 in Guaymi. In the Guabala breed, most of
the markers showed heterozygote deficits but did not reflect
deviations from HW equilibrium. An excess of heterozygotes
was obtained at all the markers evaluated in the Guaymi
breed, with a greater difference being observed in
rs133474041 (p < .05).

The variants of the genes that showed a high percentage of
monomorphic alleles in both Guabala (79%) and Guaymi (63%)
were, for the CSN1S1 gene, rs433385179 (G); for the CSN2 gene,
rs433954503 (G), rs454083280 (T), rs43703013 (G), rs43703012
(G), rs721259074 (C), and 6:87183034 (C); for the CSN1S2
gene, rs463985801 (G); and for the CSN3 gene, 6:87390198
(G), 6:87390448 (T), rs110870535 (C), rs716557965 (G),
rs43706475 (T), 6:87390604 (T), and rs43703017 (A). The var-
iants rs109299401 (T) and rs43703011 (G) of the CSN1S1
gene, rs441966828 (C) of the CSN1S2 gene, and rs439304887
(A) of the CSN3 gene, which were only observed in the
Guabala breed, were excluded.

Table 2 describes the allelic frequencies of polymorphic var-
iants of the casein gene group. In the Guabala population, the
SNP rs133474041 of the CSN1S1 gene showed the highest
reference allele (G) frequency of 0.800. In the Guaymi popu-
lation, the RefSNPs rs43703011 (CSN2), rs441966828
(CSN1S2), and rs439304887 (CSN3) all presented the highest
frequencies (0.842) of their reference alleles G, C, and A,
respectively. The SNP rs43703011 of the CSN2 gene was mono-
morphic in allele C (1.000) in the Guabala breed and had a fre-
quency of 0.842 in the Guaymi breed. The CSN1S2 gene was
polymorphic at rs441966828 in the Guaymi breed, with a C fre-
quency of 0.842. In the case of CSN3, of the 12 alleles evaluated,
5 were polymorphic in the Guaymi breed and 4 in Guabala. The
genotypic frequencies by population, considering the poly-
morphic markers, showed higher values of homozygosity in
the Guabala breed over the Guaymi breed, with GG (0.640
and 0.468) at the rs133474041 variant, CC at the rs450402006
variant (0.537 and 0.433), CC at the rs43703015 variant (0.321
and 0.250), AA at the rs43703016 variant, and AA at the
rs110014544 variant (0.321 and 0.223), respectively.

Regarding the Fixation Indices or F statistics for both popu-
lations, the values of Fis, Fit, and Fst were −0.174, −0.135, and
0.033, respectively, which were not significant.

Table 1. Mean Shannon index (I ) observed heterozygosity (Ho), expected
heterozygosity (He) and HW equilibrium of casein gene variants of the Guaymi
and Guabala breeds.

Gene Variant (RefSNP) I Ho He HW

CSN1S1 rs133474041 0.562 0.516 0.376 *
CSN2 rs109299401 0.257 0.211 0.166 ns
CSN2 rs43703011 0.218 0.158 0.133 ns
CSN1S2 rs441966828 0.218 0.158 0.133 ns
CSN3 rs450402006 0.611 0.370 0.421 ns
CSN3 rs43703015 0.689 0.575 0.496 ns
CSN3 rs43703016 0.688 0.556 0.495 ns
CSN3 rs439304887 0.218 0.158 0.133 ns
CSN3 rs110014544 0.688 0.594 0.495 ns
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Discussion

The Ne was lower than those reported by Padilla-Doval et al.
(2021) when evaluating SNPs of dairy caseins in the Holstein
breed in Colombia. The Shannon Index was slightly higher
than that reported by Pashaei et al. (2009) in the Holstein
breed (0.110) and lower than that of the native Mazarandanian
breed of Pakistan (0.210) were also lower than those reported
by Dominguez-Viveros et al. (2021) in Bos taurus breeds such
as Hereford and Limousin and by Villalobos-Cortes et al.
(2021b) in Guabala and Guaymi populations. The high percen-
tage of monomorphic alleles could be counterproductive since
it would reflect the possible presence of homozygous regions
by inbreeding, as reflected in the presence of a low number
of effective alleles (Ne), and where the Guabala breed has the
lowest values (1.167). Such behaviour in local breeds with
small population sizes is common, and the increase in consan-
guinity is one of the most relevant problems and entails
different negative effects, such as the reduction of phenotypic
values (Mastrangelo et al. 2016). This behaviour could be
reversed by reorganizing the different mating systems
between farms of producers (currently, new breeders organiz-
ation of Guaymi and Guabala cattle have been identified,
with whom new crossbreeding strategies could be developed)
and conservation centres or in vitro germplasm banks (FAO
2007). Another alternative that cannot be ruled out would be
to implement absorbent crossing strategies with populations
with close genetic distances. The allelic frequencies of the
SNP rs133474041 are lower than those reported by Kolenda
and Sitkowska (2021), who report a frequency of 0.994 for the
G variant and 0.061 for the A variant in the Holstein-Friesian
breed from Poland. Regarding rs109299401 (CSN2), the T
variant of the Guabala breed was more common than that
reported by Kolenda and Sitkowska (2021), who described a fre-
quency of 0.930. In the Guaymi population, it was lower, at
0.789. Both values of Guaymi and Guabala SNP rs43703011 of
the CSN2 gene are higher than those reported by Kolenda
and Sitkowska (2021) and those reported by Bisutti et al.
(2022) in Holstein cattle, with a frequency in C of 0.560. This
group of alleles has been of growing interest because some
studies suggest it may produce intolerance and gastrointestinal
problems (Jianqin et al. 2016; Nuhriawangsa et al., 2021) and
type 1 diabetes mellitus in infants (Elliott et al. 1999; Chia
et al. 2017) and ischaemic heart disease in adults (McLachlan
2001), associated with the release of beta-casomorphin-7 by
the presence of histidine (His67) in the A1A1 variant, unlike

the A2A2 variant, which is associated with health benefits,
Brooke-Taylor et al. (2017), although some evidence goes
against this (Venn et al. 2005; Cass et al. 2008). The difference
between the two alleles results in an amino acid difference.
The original codon CCT, which codes for the amino acid
proline in variant A2, mutates to CAT, forming histidine, in
variant A1 at position 67 of CSN2 (Bâlteanu et al. 2010;
Oleński et al. 2012). Allele A2 represents the original gene of
the genus Bos. This gene encodes the A2 allelic form of beta-
casein and is present in the milk of many mammals, such as
humans, sheep, goats, and bovines (Ng-Kwai-Hang and Gro-
sclaude 2003). The rs441966828 locus in CSN1S2 gene was
lower than the values reported by Vanvanhossou et al. (2021)
in the African breeds Lagune and Somba (1000) and the
crosses of Borgou and Pabli (0.980). Likewise, Meier et al.
(2019) reported monomorphic alleles in C of the German
Black Pied and Holstein-Friesian populatios. The frequencies
of allele C at rs450402006 in Guaymi (0.658) and Guabala
(0.733) were lower than the 0.939 reported by Kolenda and Sit-
kowska (2021). As for the T allele of the CSN3 gene and
rs43703015, the frequencies reported in this study are lower
than those obtained in Germany by Meier et al. (2019) in popu-
lations German Black Pied (0.867) and Holstein-Friesian (0.797)
and in the Holstein-Friesian breed (0.992) by Kolenda and Sit-
kowska (2021) and similar to those reported by Vanvanhossou
et al. (2021) in Benin and Nigeria (0.500).

The frequencies of the C allele of the SNP rs43703016 of the
creole breeds in this study were lower than those obtained in
the Holstein-Friesian populations in Germany (Kolenda and Sit-
kowska 2021) but similar to those reported in the Lagune and
Somba breeds in Benin (Vanvanhossou et al. 2021). The fre-
quency of A (1.000) in the SNP rs439304887 in the Guabala
breed was equal to that obtained in the Holstein-Friesian
breed of Poland (Kolenda and Sitkowska 2021), while in
Guaymi, an allele C frequency equal to 0.842 was observed.
At the SNP rs110014544 of CSN3, the breeds had G allele fre-
quencies of 0.433 (Guabala) and 0.528 (Guaymi), which were
slightly higher than those seen in the dairy breeds cited
above. These high levels of homozygosis in both populations
can be attributed to the small number of these breeds that
are within conservation programmes. Population censuses as
reported by Delgado et al. (2018) in Panama estimate that
the Guaymi breed represents 0.08% and the Guabala 0.05%
of the livestock population. It is necessary to continue
working on models of crosses and conservation modalities

Table 2. Allelic frequencies of polymorphic variants of casein genes of the Guaymi and Guabala races (reference genome UMD 3.1.1).

Gene RefSeq Consequence

Guabala Guaymi

Allelic frequency Allelic frequency

CSN1S1 rs133474041 3′UTR variant 0.800 (G) 0.200 (A) 0.684 (G) 0.316 (A)
CSN2 rs109299401 Missense variant 1.000 (T) 0.000 (G) 0.789 (T) 0.211 (G)
CSN2 rs43703011a Missense variant 1.000 (C) 0.000 (A) 0.842 (C) 0.158 (A)
CSN1S2 rs441966828 Missense variant 1.000 (C) 0.000 (T) 0.842 (C) 0.158 (T)
CSN3 rs450402006 Missense variant 0.733 (C) 0.267 (T) 0.658 (C) 0.342 (T)
CSN3 rs43703015 Missense variant 0.433 (T) 0.567 (C) 0.500 (T) 0.500 (C)
CSN3 rs43703016 Missense variant 0.429 (C) 0.571 (A) 0.500 (C) 0.500 (A)
CSN3 rs439304887 Synonymous variant 1.000 (A) 0.000 (G) 0.842 (A) 0.158 (G)
CSN3 rs110014544 Synonymous variant 0.433 (G) 0.567 (A) 0.528 (G) 0.472 (A)
aAssociated with variants A1 (A) and A2 (C) c.245C > A, exon 7 (Gallinat et al. 2013; Kolenda and Sitkowska 2021).
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whose strategies consider the implementation of conservation
centres with in situ, in vivo, and in vitro modalities. It is also vital
to promote the creation of breeders’ associations that ensure
the sustainability of the breeds over time, which would increase
the number of animals, prevent inbreeding, and initiate genetic
improvement processes, which have not been developed yet. It
is also important to consider new analysis tools, such as
genomic evaluation, to determine with greater precision the
population structures of these landraces their presence of
homozygous segments, and genomic inbreeding, among
other analyses (Kardos et al. 2015). When we consulted the
polymorphic variants in Cattle QTLdb, four of them, two in
the CSN2 gene and two in the CSN3 gene, were positive for
traits of economic interest. In the CSN2 gene, the
rs109299401 variant has been associated with somatic cell
count, longevity, milk yield, and protein yield, the rs43703011
variant with somatic cell count, longevity, fat yield, and
protein yield. In the CSN3 gene, the rs43703015 variant has
been associated with curd firmness and fat yield, the
rs43703016 variant with protein percentage (Schopen et al.
2011; Fontanesi et al. 2014; Viale et al. 2017).

Conclusion

This study determined for the first time, the genetic diversity of
the casein group in the Guaymi and Guabala populations,
which had few polymorphic alleles, particularly Guabala. Geno-
typic and allelic frequencies for Guaymi and Guabala cattle
were similar to those reported in several Bos taurus breeds.
Both breeds had a high prevalence of the A2A2 genotype at
the rs43703011 allele of CSN2, which is considered favourable
to produce good quality milk in both breeds. With the emer-
gence of a new association of Guaymi and Guabala cattle bree-
ders in Panama (ACCRIPA) and the results obtained in this work,
it is proposed to redesign a mating system that includes these
new herds. This will allow greater efficiency in conservation
programmes, a reduction in inbreeding generated by the low
number of animals, in addition to taking advantage of them
for commercial purposes, such as the production of type
A2A2 milk.
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